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0 Preliminaries

0.1 Acknowledgement

We thank Professor Jure Leskovec for a great quarter in Fall 2019. It was an inspiring experience to
learn methods for analyzing graphs and explore the frontier of neural methods for graph. CS224W
is de�nitely a great course on networks, �nd the most up to date course website [here].

We would also like to acknowledge the effort of TAs and students who compiled this collection
of class notes. We hope this note serve as an extension to the existing notes.

0.2 Necessary Math

NEEDS WORK: We should cover

1. Some matrix algebra (matrix multiplication, matrix derivative, eigenvalue, eigenvec-
tor, semi-de�nite)

2. Probabilities (Bayes' rule, conditional independence, union bound)

3. Basics on neural networks

0.3 Other Relevant Courses

Arti�cial intelligence in theory and in practice are connected to numerous sub-�elds in computer
science. As you might expect, contents taught in CS224W are also covered in other classes offered
at Stanford. For your interest, and to our best knowledge,

CS 265 Randomized Algorithms goes in depth on probabilistic existence of edges, hence strongly
related to spread of message (think disease transmission).

CS 261 A Second Course in Algorithms goes in depth on traditional graphs (max-�ow min-cut)
along with some probabilistic components. With CS261 you'll develop a much better understand-
ing of theoretical graph problems that solve real world problems.

CS 228 Probabilistic Graphical Networks covers exactly what you think, Bayesian inference
on graphs. This partially overlaps with CS265 and spends a considerable amount of time on mes-
sage passing in graph.

CS 229 Machine Learning builds the foundation of machine learning. Though not directly
relevant, it forms part of the traditional ML approach vs popular DL approach on data analysis.
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CS 230 Deep Learning is a great place to start if you are relatively new to deep learning.
CS224W expects you to have decent knowledge in deep learning and all graph neural network
techniques build on top of “typical” deep learning approaches.

CS 246 Mining Massive Datasets also deals with interconnected data. Page-rank is one of the
main topics in CS246 for those interested in the inner-workings of a search engine.
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1 Introduction

1.1 World Full of Graphs

Graphs are a natural way to describe complex interactions between entities. We use graphs/networks
interchangeably in the notes, though graph is a more commonly seen in mathematical settings de-
�ned asG(V; E).

Common networks include human society, chemical interactions, connection of neurons, knowl-
edge graphs, etc. You can roughly separate those into (1) naturally de�ned (2) man-made, but the
distinction is often dif�cult. As we will be discussing in later chapters, network relationships using
traditional methods. We usespectral clustering?? to extract community association;pagerankto
trace �ow of trust;message propagationfor probabilistic inference. In addition, we will also intro-
duce the recently booming �eld ofgraph neural networks, whose effectiveness in understanding
rich relational structure have been demonstrated by researchers.

1.2 Real World Application of Graphs

In general, our analysis of a network fall in the following categories:

� Node classi�cation: Predict the type of a given node

� Link prediction: Predict the interaction (or existence of) between two nodes

� Community detection: Identify linked clusters of nodes

� Network similarity: Measure similarity among nodes/sub-graphs/whole networks

1.2.1 Social Network

We were used to be told there is 6-degree of separation. Researchers found in 2012 [link] that
according to social graph built from Facebook data, average distance between people is in fact
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